Antwort Kdo vymyslel cosinus? Weitere Antworten – Kdo vymyslel sinus cosinus
Analytický náhled na goniometrické funkce vytvořil Leonhard Euler roku 1748 ve spise Introductio in analysin infinitorum, kde tyto funkce definoval pomocí nekonečných řad a kde také představil Eulerův zápis komplexních čísel: eix = cos(x) + i sin(x).Kosinus je goniometrická funkce. Pro označení této funkce se obvykle používá značka cos doplněná značkou nezávisle proměnné (zpravidla úhlu). V pravoúhlém trojúhelníku bývá definována jako poměr přilehlé odvěsny a přepony. Definici lze konzistentně rozšířit jak na celá reálná čísla, tak i do oboru komplexních čísel.Kosinus ( cos) úhlu α je poměr délky odvěsny přilehlé úhlu α a délky přepony.
Co je to COTG : Kotangens patří mezi goniometrické funkce. V pravoúhlém trojúhelníku bývá definována jako poměr odvěsny přilehlé a protilehlé. Pro označení této funkce se obvykle používá zkratka cotg a jejím grafem je kotangentoida.
Kolik je cos 0
Nejprve definujeme sin(0) = 0, cos(0) = 1, sin(π/2) = 1, cos(π/2) = 0.
Kdo vymyslel tangens : Jejím průkopníkem se stal Aristarchos ze Samu, který studoval vzdálenosti Slunce a Měsíce od Země.
Nejprve definujeme sin(0) = 0, cos(0) = 1, sin(π/2) = 1, cos(π/2) = 0.
X [º] | X [rad] | cos(x) |
---|---|---|
1 | 0,0175 | 0,9998 |
2 | 0,0349 | 0,9994 |
3 | 0,0524 | 0,9986 |
4 | 0,0698 | 0,9976 |
Kolik je síň 60
Hodnoty sinus na jednotkové kružnici
x (úhel) | ||
---|---|---|
60° | π/3 | 1/6 |
120° | 2π/3 | 1/3 |
75° | 5π/12 | 5/24 |
105° | 7π/12 | 7/24 |
Sinus a kvadranty
Stupně | Radiány | sin (x) |
---|---|---|
0° | 0 | 0 |
90° | π/2 | 1 |
180° | π | 0 |
270° | 3π/2 | −1 |
Sinus a kvadranty
Stupně | Radiány | sin (x) |
---|---|---|
0° | 0 | 0 |
90° | π/2 | 1 |
180° | π | 0 |
270° | 3π/2 | −1 |
Sinus je goniometrická funkce nějakého úhlu. Zapisuje se jako sin θ, kde θ je velikost úhlu. Pro ostré úhly je definována v pravoúhlém trojúhelníku jako poměr protilehlé odvěsny a přepony (nejdelší strany). Definici lze konzistentně rozšířit jak na všechna reálná čísla, tak i do oboru komplexních čísel.
Kolik je síň 0 : Sinus a kvadranty
Stupně | Radiány | sin (x) |
---|---|---|
0° | 0 | 0 |
90° | π/2 | 1 |
180° | π | 0 |
270° | 3π/2 | −1 |
Kolik je sin 120 : Hodnoty sinus na jednotkové kružnici
x (úhel) | ||
---|---|---|
45° | π/4 | 1/8 |
135° | 3π/4 | 3/8 |
60° | π/3 | 1/6 |
120° | 2π/3 | 1/3 |
Kolik je sin 90
sin(90) = sin(2.035rad) = 0.8939.
Hodnoty sinus na jednotkové kružnici
x (úhel) | ||
---|---|---|
45° | π/4 | 1/8 |
135° | 3π/4 | 3/8 |
60° | π/3 | 1/6 |
120° | 2π/3 | 1/3 |